Review: Derivatives of Logarithms - 11/2/16

1 Derivative of Natural Log

Example 1.0.1 We want to find $\frac{d}{dx}\ln(x)$. Let $\ln(x) = y$. Then $e^y = x$. Let's use implicit differentiation on this. Taking the derivative of both sides gives us $e^y \frac{dy}{dx} = 1 \frac{dx}{dx}$, so $\frac{dy}{dx} = \frac{1}{e^y}$. But we already know that $e^y = x$, so

$$\frac{d}{dx}\ln(x) = \frac{1}{x}$$

Note: All points in the domain of the derivative must also be in the domain of the original function. Thus the domain of $\frac{d}{dx} \ln(x)$ is $(0, \infty)$. It does NOT include negative numbers!

Example 1.0.2 What is $\frac{d}{dx} \frac{\ln(x)}{3x}$? We can use the quotient rule: let $f(x) = \ln(x)$ and g(x) = 3x, then $f'(x) = \frac{1}{x}$ and g'(x) = 3. Then $\frac{d}{dx} \frac{\ln(x)}{3x} = \frac{\frac{1}{x} 3x - 3\ln(x)}{(3x)^2} = \frac{3 - 3\ln(x)}{9x^2} = \frac{1 - \ln(x)}{3x^2}$.

Example 1.0.3 What is $\frac{d}{dx} \ln(x^2 - 3)$? We need to use the chain rule: let $f(u) = \ln(u)$ and $g(x) = x^2 - 3$, so $f'(x) = \frac{1}{x}$ and g'(x) = 2x. Then $\frac{d}{dx} \ln(x^2 - 3) = \frac{1}{x^2 - 3} \cdot 2x$. The domain of the original function is $(-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$. What about the domain for the derivative? If this were just an ordinary function, then the domain would be all points except $x = \sqrt{3}$. However, it's a derivative, so it can't have any points in its domain that aren't in the domain of the original function. Thus the domain for the derivative is also $(-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$.

2 Derivative of Logarithms

Example 2.0.4 Find $\frac{d}{dx}\log_b(x)$. Note that we can rewrite this as $\frac{d}{dx}\frac{\ln(x)}{\ln(b)}$ using the change of base formula. Since $\ln(b)$ is a number, we can pull this outside using the constant multiple rule, so we have $\frac{1}{\ln(b)}\frac{d}{dx}\ln(x) = \frac{1}{x\ln(b)}$.

From the above calculations, we have found:

$$\frac{d}{dx}\log_b(x) = \frac{1}{x\ln(b)}.$$

Example 2.0.5 Find $\frac{d}{dx}\log_2(x)$. Here we just substitute in 2 for b to get $\frac{d}{dx}\log_2(x) = \frac{1}{x\ln(2)}$.

Example 2.0.6 Find $\frac{d}{dx}\log_3(x^2-5)$. We can use the chain rule: let $f(u) = \log_3(u)$ and $g(x) = x^2 - 5$, so $f'(u) = \frac{1}{u\ln(3)}$ and g'(x) = 2x. Then $\frac{d}{dx}\log_3(x^2-5) = \frac{1}{(x^2-5)\ln(3)} \cdot 2x$.

3 Derivative of Exponential Functions

Example 3.0.7 Find $\frac{d}{dx}b^x$. Recall that $b = e^{\ln(b)}$ since \ln is the inverse function of e. Then we can rewrite this as $\frac{d}{dx}(e^{\ln(b)})^x = \frac{d}{dx}e^{(\ln(b))x}$. Now we can use the chain rule to find the derivative: let $f(u) = e^u$ and $g(x) = \ln(b)x$, so $f'(u) = e^u$ and $g'(x) = \ln(b)$. Then $\frac{d}{dx}b^x = \frac{d}{dx}e^{(\ln(b))x} = e^{\ln(b)x} \cdot \ln(b) = b^x \ln(b)$.

From the above calculations, we have found:

$$\frac{d}{dx}b^x = b^x \ln(b)$$

Example 3.0.8 Find $\frac{d}{dx}2^x$. We just substitute 2 in for b to get $\frac{d}{dx}2^x = 2^x \ln(2)$.

Example 3.0.9 Find $\frac{d}{dx}2^x \arcsin(x)$. We can use the product rule: let $f(x) = 2^x$ and $g(x) = \arcsin(x)$, so $f'(x) = 2^x \ln(x)$ and $g'(x) = \frac{1}{\sqrt{1-x^2}}$. Then $\frac{d}{dx}2^x \arcsin(x) = 2^x \ln(x) \arcsin(x) + \frac{2^x}{\sqrt{1-x^2}}$.

Example 3.0.10 Find $\frac{d}{dx} 5^{\frac{x+2}{3x^2}}$. We first use the chain rule: let $f(u) = 5^u$ and $g(x) = \frac{x+2}{3x^2}$, so $f'(u) = 5^u \ln(5)$. To find the derivative of g, we need the quotient rule: let z(x) = x + 2 and $q(x) = 3x^2$, so z'(x) = 1 and q'(x) = 6x. Then $g'(x) = \frac{3x^2 - 6x(x+2)}{(3x^2)^2}$. Then $\frac{d}{dx} 5^{\frac{x+2}{3x^2}} = 5^{\frac{x+2}{3x^2}} \ln(5) \cdot \frac{3x^2 - 6x(x+2)}{(3x^2)^2}$.

Practice Problems

- 1. Find $\frac{d}{dx}\sin(\ln(x))$.
- 2. Find $\frac{d}{dx}\log_3(xe^x)$.
- 3. Find $\frac{d}{dx}\log_3(2^x)$.
- 4. Let $\log_2(x+y) = y^2$. Find $\frac{dy}{dx}$.

Solutions

- 1. We can use the chain rule to get $\frac{d}{dx}\sin(\ln(x)) = \cos(\ln(x)) \cdot \frac{1}{x}$.
- 2. We can use the chain rule to get $\frac{d}{dx}\log_3(xe^x) = \frac{1}{xe^x\ln(3)} \cdot (e^x + xe^x)$.
- 3. We can use the chain rule to get $\frac{d}{dx}\log_3(2^x) = \frac{1}{2^x \ln(3)} \cdot 2^x \ln(2) = \frac{\ln(2)}{\ln(3)}$.
- 4. We can use implicit differentiation. First, find the derivative of both sides: $\frac{1}{(x+y)\ln(2)} \cdot (y\frac{dx}{dx} + x\frac{dy}{dx}) = 2y\frac{dy}{dx}$. Now we move $\frac{dy}{dx}$ to one side: $\frac{y}{(x+y)\ln(2)} = 2y\frac{dy}{dx} \frac{x}{(x+y)\ln(2)}\frac{dy}{dx}$. Now we solve for $\frac{dy}{dx}$ to get

$$\frac{dy}{dx} = \frac{\frac{y}{(x+y)\ln(2)}}{2y - \frac{x}{(x+y)\ln(2)}} = \frac{y}{2y(x+y)\ln(2) - x}$$