Review: Derivatives of Logarithms - 11/2/16

1 Derivative of Natural Log

Example 1.0.1 We want to find $\frac{d}{d x} \ln (x)$. Let $\ln (x)=y$. Then $e^{y}=x$. Let's use implicit differentiation on this. Taking the derivative of both sides gives us $e^{y} \frac{d y}{d x}=1 \frac{d x}{d x}$, so $\frac{d y}{d x}=\frac{1}{e^{y}}$. But we already know that $e^{y}=x$, so

$$
\frac{d}{d x} \ln (x)=\frac{1}{x} .
$$

Note: All points in the domain of the derivative must also be in the domain of the original function. Thus the domain of $\frac{d}{d x} \ln (x)$ is $(0, \infty)$. It does NOT include negative numbers!

Example 1.0.2 What is $\frac{d}{d x} \frac{\ln (x)}{3 x}$? We can use the quotient rule: let $f(x)=\ln (x)$ and $g(x)=3 x$, then $f^{\prime}(x)=\frac{1}{x}$ and $g^{\prime}(x)=3$. Then $\frac{d}{d x} \frac{\ln (x)}{3 x}=\frac{\frac{1}{x} 3 x-3 \ln (x)}{(3 x)^{2}}=\frac{3-3 \ln (x)}{9 x^{2}}=\frac{1-\ln (x)}{3 x^{2}}$.

Example 1.0.3 What is $\frac{d}{d x} \ln \left(x^{2}-3\right)$? We need to use the chain rule: let $f(u)=\ln (u)$ and $g(x)=x^{2}-3$, so $f^{\prime}(x)=\frac{1}{x}$ and $g^{\prime}(x)=2 x$. Then $\frac{d}{d x} \ln \left(x^{2}-3\right)=\frac{1}{x^{2}-3} \cdot 2 x$. The domain of the original function is $(-\infty,-\sqrt{3}) \cup(\sqrt{3}, \infty)$. What about the domain for the derivative? If this were just an ordinary function, then the domain would be all points except $x=\sqrt{3}$. However, it's a derivative, so it can't have any points in its domain that aren't in the domain of the original function. Thus the domain for the derivative is also $(-\infty,-\sqrt{3}) \cup(\sqrt{3}, \infty)$.

2 Derivative of Logarithms

Example 2.0.4 Find $\frac{d}{d x} \log _{b}(x)$. Note that we can rewrite this as $\frac{d}{d x} \frac{\ln (x)}{\ln (b)}$ using the change of base formula. Since $\ln (b)$ is a number, we can pull this outside using the constant multiple rule, so we have $\frac{1}{\ln (b)} \frac{d}{d x} \ln (x)=\frac{1}{x \ln (b)}$.

From the above calculations, we have found:

$$
\frac{d}{d x} \log _{b}(x)=\frac{1}{x \ln (b)}
$$

Example 2.0.5 Find $\frac{d}{d x} \log _{2}(x)$. Here we just substitute in 2 for b to get $\frac{d}{d x} \log _{2}(x)=\frac{1}{x \ln (2)}$.
Example 2.0.6 Find $\frac{d}{d x} \log _{3}\left(x^{2}-5\right)$. We can use the chain rule: let $f(u)=\log _{3}(u)$ and $g(x)=$ $x^{2}-5$, so $f^{\prime}(u)=\frac{1}{u \ln (3)}$ and $g^{\prime}(x)=2 x$. Then $\frac{d}{d x} \log _{3}\left(x^{2}-5\right)=\frac{1}{\left(x^{2}-5\right) \ln (3)} \cdot 2 x$.

3 Derivative of Exponential Functions

Example 3.0.7 Find $\frac{d}{d x} b^{x}$. Recall that $b=e^{\ln (b)}$ since \ln is the inverse function of e. Then we can rewrite this as $\frac{d}{d x}\left(e^{\ln (b)}\right)^{x}=\frac{d}{d x} e^{(\ln (b)) x}$. Now we can use the chain rule to find the derivative: let $f(u)=e^{u}$ and $g(x)=\ln (b) x$, so $f^{\prime}(u)=e^{u}$ and $g^{\prime}(x)=\ln (b)$. Then $\frac{d}{d x} b^{x}=\frac{d}{d x} e^{(\ln (b)) x}=$ $e^{\ln (b) x} \cdot \ln (b)=b^{x} \ln (b)$.

From the above calculations, we have found:

$$
\frac{d}{d x} b^{x}=b^{x} \ln (b)
$$

Example 3.0.8 Find $\frac{d}{d x} 2^{x}$. We just substitute 2 in for b to get $\frac{d}{d x} 2^{x}=2^{x} \ln (2)$.
Example 3.0.9 Find $\frac{d}{d x} 2^{x} \arcsin (x)$. We can use the product rule: let $f(x)=2^{x}$ and $g(x)=$ $\arcsin (x)$, so $f^{\prime}(x)=2^{x} \ln (x)$ and $g^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}$. Then $\frac{d}{d x} 2^{x} \arcsin (x)=2^{x} \ln (x) \arcsin (x)+\frac{2^{x}}{\sqrt{1-x^{2}}}$.

Example 3.0.10 Find $\frac{d}{d x} 5^{\frac{x+2}{3 x^{2}}}$. We first use the chain rule: let $f(u)=5^{u}$ and $g(x)=\frac{x+2}{3 x^{2}}$, so $f^{\prime}(u)=5^{u} \ln (5)$. To find the derivative of g, we need the quotient rule: let $z(x)=x+2$ and $q(x)=$ $3 x^{2}$, so $z^{\prime}(x)=1$ and $q^{\prime}(x)=6 x$. Then $g^{\prime}(x)=\frac{3 x^{2}-6 x(x+2)}{\left(3 x^{2}\right)^{2}}$. Then $\frac{d}{d x} 5^{\frac{x+2}{3 x^{2}}}=5^{\frac{x+2}{3 x^{2}}} \ln (5) \cdot \frac{3 x^{2}-6 x(x+2)}{\left(3 x^{2}\right)^{2}}$.

Practice Problems

1. Find $\frac{d}{d x} \sin (\ln (x))$.
2. Find $\frac{d}{d x} \log _{3}\left(x e^{x}\right)$.
3. Find $\frac{d}{d x} \log _{3}\left(2^{x}\right)$.
4. Let $\log _{2}(x+y)=y^{2}$. Find $\frac{d y}{d x}$.

Solutions

1. We can use the chain rule to get $\frac{d}{d x} \sin (\ln (x))=\cos (\ln (x)) \cdot \frac{1}{x}$.
2. We can use the chain rule to get $\frac{d}{d x} \log _{3}\left(x e^{x}\right)=\frac{1}{x e^{x} \ln (3)} \cdot\left(e^{x}+x e^{x}\right)$.
3. We can use the chain rule to get $\frac{d}{d x} \log _{3}\left(2^{x}\right)=\frac{1}{2^{x} \ln (3)} \cdot 2^{x} \ln (2)=\frac{\ln (2)}{\ln (3)}$.
4. We can use implicit differentiation. First, find the derivative of both sides: $\frac{1}{(x+y) \ln (2)} \cdot\left(y \frac{d x}{d x}+\right.$ $\left.x \frac{d y}{d x}\right)=2 y \frac{d y}{d x}$. Now we move $\frac{d y}{d x}$ to one side: $\frac{y}{(x+y) \ln (2)}=2 y \frac{d y}{d x}-\frac{x}{(x+y) \ln (2)} \frac{d y}{d x}$. Now we solve for $\frac{d y}{d x}$ to get

$$
\frac{d y}{d x}=\frac{\frac{y}{(x+y) \ln (2)}}{2 y-\frac{x}{(x+y) \ln (2)}}=\frac{y}{2 y(x+y) \ln (2)-x}
$$

